## MATH 105 101 Midterm 2 Sample 5

- 1. (20 marks)
  - (a) (5 marks) Determine the intervals on which the following function is concave up or concave down:

$$F(x) = \int_0^x te^t dt.$$

(b) (5 marks) Find the definite integral:

$$\int_{-\pi/2}^{\pi/2} \sin^7(x) \, dx.$$

- (c) (5 marks) Compute the Right Riemann sum for  $f(x) = \sin^2(x)$  on the interval  $[0, \pi]$  using n = 6 equal subintervals. **Simplify the answer.**
- (d) (5 marks) Find the definite integral

$$\int_{-\infty}^{0} e^{3x} dx.$$

- 2. (10 marks) Let  $f(x) = x^3 \cos(x)$  on  $[-\pi, \pi]$ .
  - (a) (5 marks) Compute an approximation of  $\int_{-\pi}^{\pi} f(x) dx$  using Simpson's Rule with n=4 equal subintervals. Simplify the answer.
  - (b) (5 marks) Find an upper bound of the error for the approximation in part (a).
- 3. (10 marks) Evaluate the indefinite integral:

$$\int \cos(\ln x) \, dx.$$

4. (10 marks) Solve the initial value problem:

$$\frac{dy}{dt} = \frac{ty^3}{\sqrt{1+t^2}}, \qquad y(0) = -1.$$

Express the answer in its explicit form.